中文

Pseudo-supervised image clustering based on meta-features

Hits:

  • Key Words:

  • Abstract:Stable semantics is a prerequisite for achieving excellent image clustering. However, most current methods suffer from inaccurate class semantic estimation, which limits the clustering performance. For the sake of addressing the issue, we propose a pseudo-supervised clustering framework based on meta-features. First, the framework mines meta-semantic features (i.e., meta-features) of image categories based on instance-level features, which not only preserves instance-level information but also ensures the semantic robustness of meta-features. Ulteriorly, we propagate pseudo-labels to its global neighbor samples with meta-features as the center, which effectively avoids the accumulation of errors caused by the misclassification of samples at the cluster boundary. Finally, we exploit the cross-entropy loss with label smoothing to optimize the pseudo-label optimization network. This optimization method not only achieves a direct mapping from features to stable semantic labels, but also effectively avoids suboptimal solutions caused by multi-level optimization. Extensive experiments demonstrate that our method significantly outperforms twenty-one competing clustering methods on six challenging datasets.

  • Volume:9

  • Issue:6

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..