中文

Multi-attention fusion and weighted class representation for few-shot classification

Hits:

  • Key Words:

  • Abstract:The existing few-shot learning(FSL) approaches based on metric-learning usually lack attention to the distinction of feature contributions,and the importance of each sample is often ignored when obtaining the class representation,where the performance of the model is limited.Additionally,similarity metric method is also worthy of attention.Therefore,a few-shot learning approach called MWNet based on multi-attention fusion and weighted class representation(WCR) is proposed in this paper.Firstly,a multi-attention fusion module is introduced into the model to highlight the valuable part of the feature and reduce the interference of irrelevant content.Then,when obtaining the class representation,weight is given to each support set sample,and the weighted class representation is used to better express the class.Moreover,a mutual similarity metric method is used to obtain a more accurate similarity relationship through the mutual similarity for each representation.Experiments prove that the approach in this paper performs well in few-shot image classification,and also shows remarkable excellence and competitiveness compared with related advanced techniques.

  • Volume:v.28

  • Issue:03

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..