副教授
硕士生导师
教师拼音名称:zhangzhonghua
电子邮箱:
所在单位:新能源材料与器件教研室
学历:博士研究生
办公地点:材料学院楼215A
性别:男
联系方式:15092410550
学位:工学博士
职称:副教授
毕业院校:中国科学院大学
学科:材料科学与工程其他专业
材料学移动电话:
邮箱:
2023-09-15 2023 年度山东省优秀研究生导师
2022-12-30 2022年山东省优秀硕士学位论文指导教师
2022-03-01 2021年度校级先进工作者
2020-06-01 2019年度校级先进工作者
最后更新时间:..
关键字:RECENT PROGRESS; ION
摘要:Germanium (Ge) anode shows great promise in overcoming unsatisfied capacity and dendrite formation concerns facing conventional graphite anodes in next generation lithium ion batteries. However, volume changes during repeated alloying and de-alloying cycles seriously impair structural stability and cycle lifespan. In this work, a facile chemical confinement strategy has been firstly proposed to alleviate volume changes of Ge anode. Benefited from strong binding interaction between Ge and ZnS, discrete Ge nanoparticle can be successfully encapsulated within thin protective ZnS shell and N-doped carbon layer (Ge-ZnS@N-C) after two-step carbonization and sulfurization of polydopamine-coating Zn2GeO4 nanorod precursors. In contrast, bulk Ge aggregates and hollow N-doped carbon nanotubes can be formed without chemical confinement of ZnS. The as-prepared GeZnS@N-C sample displays multifold structural merits, including nanosized Ge particles with highly electrochemical activity, sufficient pores and functional groups that facilitate ion diffusion. Besides, protective ZnS shell and N-doped carbon layer can suppress volume changes of Ge nanoparticles and guarantee high electrode reversibility, demonstrated by a series of in-situ and ex-situ experiments. The as-synthesized Ge-ZnS@N-C anodes exhibit stable long-cycle performance (1389.7 mAh/g after 450 cycles at a current density of 0.5 A/g) and excellent rate performance (548.5 and 397.8 mAh/g at 5.0 and 8.0 A/g, respectively).
卷号:497
期号:
是否译文:否