副教授
硕士生导师
教师拼音名称:zhangzhonghua
电子邮箱:
所在单位:新能源材料与器件教研室
学历:博士研究生
办公地点:材料学院楼215A
性别:男
联系方式:15092410550
学位:工学博士
职称:副教授
毕业院校:中国科学院大学
学科:材料科学与工程其他专业
材料学移动电话:
邮箱:
2023-09-15 2023 年度山东省优秀研究生导师
2022-12-30 2022年山东省优秀硕士学位论文指导教师
2022-03-01 2021年度校级先进工作者
2020-06-01 2019年度校级先进工作者
最后更新时间:..
关键字:ANODE MATERIAL; RECENT PROGRESS; LITHIUM; NIS; NANOSHEETS; EVOLUTION; GES2
摘要:The mesoporous compositional gradient nitrogen-doped carbon encapsulated germanium disulfide-nickel sulfide (abbreviated as "GeS2@NiS@N-C ") microspheres have been synthesized. The Ni3Ge2O5(OH)(4) microspheres precursor is firstly prepared by a hydrothermal mineralization process, which transforms to Ge3Ni5 microspheres by high temperature reduction. A thin polydopamine shell protects the microsphere architecture, which is converted into nitrogen-doped carbon layers. The GeS2@NiS@N-C microspheres are finally fabricated via a high temperature interdiffusion vulcanization process induced by Kirkendall effect, during which the interdiffusion rate of Ni atoms is much faster than that of Ge atoms leading to the gradual composition changes from the exterior (NiS phase is rich) to the interior (GeS2 phase is rich) throughout a single microsphere. The GeS2@NiS@N-C microspheres show unique structural advantage of the abundant heterogeneous interfaces, which accelerates the Li+ diffusion kinetics proved by density functional theory results. Besides, the in-situ XRD analyses reveal a continuous lithiation sequence as the compositional gradient from NiS to GeS2, during which the in-situ generated Ni clusters from NiS construct a continuous and penetrating e(-) transport channel throughout the microsphere. As a result, the GeS2@NiS@N-C microspheres exhibit improved cycling stability and rate capability when employed as anodes for lithium ion batteries.
卷号:605
期号:
是否译文:否