副教授
硕士生导师
教师拼音名称:zhangzhonghua
电子邮箱:
所在单位:新能源材料与器件教研室
学历:博士研究生
办公地点:材料学院楼215A
性别:男
联系方式:15092410550
学位:工学博士
职称:副教授
毕业院校:中国科学院大学
学科:材料科学与工程其他专业
材料学移动电话:
邮箱:
2023-09-15 2023 年度山东省优秀研究生导师
2022-12-30 2022年山东省优秀硕士学位论文指导教师
2022-03-01 2021年度校级先进工作者
2020-06-01 2019年度校级先进工作者
最后更新时间:..
关键字:SULFUR CATHODE; PERFORMANCE; LITHIUM; BATTERIES; EFFICIENT; MECHANISM; ELECTRODE
摘要:Magnesium (Mg) metal anode pairing with Sulfur (S) cathode has been regarded as a promising contender for next-generation battery technology holding the characteristics of safety in use, low cost and high energy density. However, the sluggish kinetic and the inferior reversibility of Mg-S electrochemical reaction are two main challenges impeding the development of practical Mg-S batteries. Herein, SeS2 is proposed as a superior cathode for Mg batteries based on the complementary features of S (high specific capacity) and Se (high electronic conductivity). In this designed Mg-SeS2 battery with a Cu foam interlayer between cathode and separator, SeS2 compositing with ordered mesoporous carbon (SeS2/CMK3) exhibits impressive electrochemical performance. Various characterizations towards the electrochemical evolution on cathode side reveal that Cu foam interlayer not only acts as the trapping layer by the rapid chemical immobilization of polysulfide (polyselenide) species on Cu foam, but also serves as a "promoter" to propel the overall charge-discharge kinetics by the reversible displacement reaction between copper sulfide (copper selenide) and Mg2+. Benefiting from the unique advantages of SeS2/CMK3 and the rationally designed Cu interlayer, this novel Mg-SeS2 system demonstrates a feasible strategy to exploit the rechargeable Mg batteries with low cost, high areal capacity and large current capability.
卷号:26
期号:
是否译文:否