Personal Homepage

Personal Information

MORE+

Associate professor

Supervisor of Master's Candidates

E-Mail:

Education Level:博士研究生

Gender:Male

Degree:工学博士

Discipline:Other specialties in Material Science and Engineering
Material Science

张忠华

+

Gender:Male

Education Level:博士研究生

Paper Publications

Synergy between the coordination and trace ionization of co-solvents enables reversible magnesium electroplating stripping behavior

Key Words:电池; 金属镁负极; 电解液
Abstract:Electrolyte chemistries, including the composition of chemical species and their transformation processes, are of utmost importance for safe and stable operation of any battery, but the corresponding understanding remains incomplete. Prevalent viewpoints on direct solvation are not satisfactory sometimes in describing the implicit relationship among solvents, active ionic species and electrode/electrolyte interphases. Here we report the synergy between the coordination and trace ionization of amine/ether co-solvents to enable a reversible magnesium (Mg)-metal anode for low cost rechargeable Mg batteries. Unique bivalent [Mg(amino)6]2+ is firstly identified as the active ionic species via single-crystal X-ray diffraction, mass spectroscopy, and NMR tests. Partially protonated alkylamine/ether cations, formed due to trace solvent ionization, can chemically associate with the trifluoromethanesulfonimide (TFSI) anion to form neutrally charged ion pairs, mitigating the decomposition of the TFSI anion on the Mg-metal anode. Cryo-electron microscopy images along with the deuterium-oxide (D2O) titration tests reveal a much thin electrolyte-anode interface and one distinctive component of MgH2 in electrodeposits, closely related to the ionization process of co-solvents. A much better Mg plating/stripping reversibility (an overpotential of similar to 0.10 V vs. similar to 2.0 V for the pristine electrolyte) and prolonged cycle life (similar to 320 h vs. similar to 38 h for the pristine electrolyte) are achieved by regulating the coordination/ionization processes of co-solvents. The synergy between coordination and trace ionization induces active ionic species formation and simultaneously alleviates electrolyte decomposition.
Volume:17
Issue:2
Translation or Not:no