当前位置: 中文主页 >> 科学研究 >> 论文成果

Defect-engineering of Pt/Bi4NbO8Br heterostructures for synergetic promotional photocatalytic removal of versatile organic contaminants

发布时间:2021-06-29点击次数:

  • 摘要:A strategy to improve its photocatalytic performance is still a challenge for the novel Sillen-Aurivillius perovskite type Bi4NbO8Br. Herein, novel Pt modified Bi4NbO8Br composites (Pt/BNB) with sufficient oxygen vacancies were successfully fabricated via a facile in situ chemical reduction method. For one thing, the deposition of Pt nanoparticles brings about a Mott-Schottky effect at the interface to accept photo-induced electrons, leading to an efficient charge separation. For another thing, the electronic metal-support interaction of Pt and Bi4NbO8Br decreases the formation energy of oxygen defects, which could serve as active sites for O-2 activation. On account of the synergetic effect of Pt and oxygen vacancies, the dominant active species-photogenerated holes are accumulated on the surface of the photocatalysts, while the additional superoxide radicals are also involved. Hence, Pt/BNB performed with excellent photocatalytic activities in the degradation of wastewater contaminants, and the kinetic rate was 4.64, 10.21, 5.53, 9.80, 1.71 and 4.05 times, respectively, those of pristine Bi4NbO8Br towards methyl orange, rhodamine B, 2,4-dichlorophenol, p-nitrophenol, ciprofloxacin and tetracycline hydrochloride.
  • 卷号:9
  • 期号:8
  • 是否译文:否
+
论文成果

个人信息

  • 毕业院校:中国科学院上海硅酸盐研究所
  • 学历:博士研究生
  • 学科: 材料物理与化学;
    材料学

其他联系方式

  • 邮箱: