硕士生导师
教师拼音名称:zhangmeng
出生日期:1984-03-15
入职时间:2014-09-10
所在单位:无机非金属材料教研室
学历:博士研究生
性别:男
联系方式:13792436574
学位:工学博士
学科:材料学
最后更新时间:..
关键字:Graphene;Chemical vapor deposition - Electron emission - Field emission - Multilayers - Nanostructured materials - Silica - Silicon carbide;Chemical vapor depositions (CVD) - Current fluctuations - Emission efficiencies - Field emission measurements - High temperature field - Increased temperature - Number of electrons - Structural component
摘要:In the present work, in order to obtain a promising material, SiC@SiO<inf>2</inf>@graphene nanoarrays with numerous flake-like graphene coatings have been prepared on a Si substrate through a simple chemical vapor deposition (CVD) approach. The field emission (FE) measurements show that the turn-on field (E<inf>to</inf>) of the as-synthesized SiC@SiO<inf>2</inf>@graphene nanoarrays is decreased dramatically from 1.75 V μm<sup>-1</sup>to 0.73 V μm<sup>-1</sup>when temperature is increased from room temperature (RT) to 500 °C, which is superior to most SiC one-dimensional (1D) nanomaterials. The current fluctuation of the emitters at RT and 200 °C is approximately ±1.3% and ±1.7%, respectively, suggesting remarkable emission efficiency and stability of the sample. The excellent FE behavior is mainly attributed to the distinctly increased number of electron emission sites and the Fermi level (E<inf>f</inf>) adjustment caused by the multilayer heterostructure as well as the increased temperatures. Based on the structural components of the nanoarrays, a reasonable "Stripping Reconstruction" mechanism model has been first established. It is believed that not only can the as-synthesized SiC@SiO<inf>2</inf>@graphene nanoarrays be utilised as promising emitters under high temperatures, but also the proposed mechanism model and the multilayer decoration strategy are valuable for the FE enhancement of other 1D nanomaterials.<br/> © The Royal Society of Chemistry 2018.
卷号:6
期号:11
是否译文:否