张猛   

张猛,副教授,硕士生导师,“泰山学者”团队核心成员。江苏省“科技副总”、青岛市十二届青年科技奖、青岛科技大学“科研新秀”、中国晶体学会会员、材料研究学会专业会员、中国化工学会高级会员、全国材料与器件科学家智库磁性材料与器件专家委员会常务委员、中国仪器仪表学会仪表功能材料分会电子元器件关键材料与技术专业委员会委员、国家自然科学基金/山东省自然科学基金/青岛市高新技术企业评审专家、SCI期刊《Frontiers ...Detials

Enhancing Defect-Induced Dipole Polarization Strategy of SiC@MoO<sub>3</sub> Nanocomposite Towards Electromagnetic Wave Absorption

Release time:2024-12-24  Hits:

  • Key Words:MICROWAVE-ABSORPTION; PERFORMANCES; COMPOSITES; ABSORBERS; NANOWIRES
  • Abstract:Defect engineering in transition metal oxides semiconductors (TMOs) is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials. However, achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive, posing a substantial challenge to the advancement of TMOs absorbers. The current research describes a process for the deposition of a MoO3 layer onto SiC nanowires, achieved via electro-deposition followed by high-temperature calcination. Subsequently, intentional creation of oxygen vacancies within the MoO3 layer was carried out, facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material. Remarkably, the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of - 50.49 dB at a matching thickness of 1.27 mm. Furthermore, the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm, comprehensively covering the entire Ku band. These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness. SiC@MO-t samples with ying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO3 nanocomposite. The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution, which in turn enhances conductivity loss and induced polarization loss capacity. This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.
  • Volume:16
  • Issue:1
  • Translation or Not:no