张猛   

张猛,副教授,硕士生导师,“泰山学者”团队核心成员。江苏省“科技副总”、青岛市十二届青年科技奖、青岛科技大学“科研新秀”、中国晶体学会会员、材料研究学会专业会员、中国化工学会高级会员、全国材料与器件科学家智库磁性材料与器件专家委员会常务委员、中国仪器仪表学会仪表功能材料分会电子元器件关键材料与技术专业委员会委员、国家自然科学基金/山东省自然科学基金/青岛市高新技术企业评审专家、SCI期刊《Frontiers ...Detials

Designable synthesis of reduced graphene oxide modified using CoFe<inf>2</inf>O<inf>4</inf> nanospheres with tunable enhanced microwave absorption performances between the whole X and Ku bands

Release time:2024-12-24  Hits:

  • Key Words:Reduced Graphene Oxide;Fillers - Graphene - Iron compounds - Microwaves - Nanospheres
  • Abstract:Facing the increasingly serious electromagnetic radiation, synthesis of graphene-containing microwave absorber with strong reflection loss (RL) and broad effective absorption bandwidth (EAB) have attracted tremendous interest due to their potential application in various areas. Herein, CoFe<inf>2</inf>O<inf>4</inf>@rGO hybrid nanocomposites composed of reduced graphene oxide (rGO) and embedded CoFe<inf>2</inf>O<inf>4</inf> nanospheres were synthesized through an one-step solvothermal strategy. Enhanced microwave absorption properties of the nanocomposites with different CoFe<inf>2</inf>O<inf>4</inf> nanospheres contents were investigated systematically, the RL value as well as the corresponding EAB could be effectively tuned by adjusting the filler contents of CoFe<inf>2</inf>O<inf>4</inf>@rGO hybrid nanocomposites. Remarkably, the minimal RL value of −67.58 dB accompanying with the corresponding EAB of 6.3 GHz (almost covering the whole Ku band) and the minimal RL value of −55.70 dB accompanying with the EAB of 4.0 GHz (almost covering the whole X band) can be achieved by the optimal sample with 10 wt% filler content at 2.1 mm and 2.7 mm matching thickness, respectively. The synergistic effect of impedance matching, hybrid microstructure together with various loss mechanisms are of crucial significance to enhance the absorption performances. The results suggest that the hybrid nanocomposites can serve as a promising lightweight and high-efficiency candidate absorber, and the simple synthesis technique gives a valuable clue for obtaining ideal microwave absorber.<br/> © 2020 Elsevier Ltd
  • Volume:190
  • Issue:-
  • Translation or Not:no