张猛   

张猛,副教授,硕士生导师,“泰山学者”团队核心成员。江苏省“科技副总”、青岛市十二届青年科技奖、青岛科技大学“科研新秀”、中国晶体学会会员、材料研究学会专业会员、中国化工学会高级会员、全国材料与器件科学家智库磁性材料与器件专家委员会常务委员、中国仪器仪表学会仪表功能材料分会电子元器件关键材料与技术专业委员会委员、国家自然科学基金/山东省自然科学基金/青岛市高新技术企业评审专家、SCI期刊《Frontiers ...Detials

Rice husk derived porous carbon embedded with Co3Fe7 nanoparticles towards microwave absorption

Release time:2023-10-19  Hits:

  • Key Words:ELECTROMAGNETIC-WAVE ABSORPTION; PERFORMANCE; NANOCOMPOSITES
  • Abstract:For eliminating electromagnetic pollution caused by harmful electromagnetic waves, it is urgent to develop electromagnetic absorption materials with strong refection loss and wide bands. In this study, the rice husk was employed as raw material to prepare lightweight and high specific surface area porous carbon (RHC). Subsequently, using RHC as the carrier, the RHC@Co3Fe7 nanocomposites were obtained by embedding Co3Fe7 nanoparticles into the pore of the RHC. Under the synergistic influence of the multiple reflection/scattering of porous structure, magnetic resonance of Co3Fe7 nanoparticles, as well as electron polarization aroused by the heterogeneous interface between RHC and Co3Fe7 , the minimal reflection loss (RLmin) of the optimal product reaches to-68.106 dB at 16.24 GHz with the matching thickness of 1.44 mm. Meanwhile, for the optimal sample, the widest effective absorption bandwidth (EAB) is nearly 5 GHz covering the frequency range of 10.96-15.92 GHz at a matching thickness of 1.79 mm. The excellent absorption performance of RHC@Co3Fe7 nanocomposites may provide a new strategy for the preparation of lightweight, thin thickness, strong absorption and wide bandwidth material.
  • Volume:229
  • Issue:
  • Translation or Not:no