张猛   

张猛,副教授,硕士生导师,“泰山学者”团队核心成员。江苏省“科技副总”、青岛市十二届青年科技奖、青岛科技大学“科研新秀”、中国晶体学会会员、材料研究学会专业会员、中国化工学会高级会员、全国材料与器件科学家智库磁性材料与器件专家委员会常务委员、中国仪器仪表学会仪表功能材料分会电子元器件关键材料与技术专业委员会委员、国家自然科学基金/山东省自然科学基金/青岛市高新技术企业评审专家、SCI期刊《Frontiers ...Detials

Preparation and electromagnetic wave absorption performance of Fe<inf>3</inf>Si/SiC@SiO<inf>2</inf> nanocomposites

Release time:2021-03-15  Hits:

  • Key Words:Electromagnetic wave absorption;Circular waveguides - Dielectric losses - Electromagnetic waves - Iron compounds - Low-k dielectric - Mechanisms - Nanocomposites - Nanomagnetics - Nanoparticles - Nanowires - Silica - Silicon carbide
  • Abstract:This paper aimed to prepare an effective absorber with tunable electromagnetic wave (EMW) absorption capabilities and excellent physicochemical stability within the frequency range of 2–18 GHz. Typically, the nanocomposites constructed by SiC@SiO<inf>2</inf> nanowire and Fe<inf>3</inf>Si magnetic nanoparticle (Fe<inf>3</inf>Si/SiC@SiO<inf>2</inf>) had been prepared based on an in-situ carbon thermal reduction strategy. The as-prepared products had exhibited broad effective absorption bandwidth of up to 5.4 GHz and a thin thickness of 2.4 mm; besides, the minimal reflection loss (RL) value was as low as −37.53 dB at 15.5 GHz, implying that the as-prepared nanocomposite had displayed extensive application potential as an EMW absorber candidate. Moreover, results of systematic characterization suggested that, the Fe<inf>3</inf>Si magnetic nanoparticles had exerted a positive role in pure SiC@SiO<inf>2</inf> nanowires to improve the EMW absorption performance. In addition, the attenuation of EMW should be attributed to the synergistic effect derived from impedance matching, dielectric loss, magnetic loss and interface polarization.<br/> © 2019 Elsevier B.V.
  • Issue:362
  • Translation or Not:no