张猛   

张猛,副教授,硕士生导师,“泰山学者”团队核心成员。江苏省“科技副总”、青岛市十二届青年科技奖、青岛科技大学“科研新秀”、中国晶体学会会员、材料研究学会专业会员、中国化工学会高级会员、全国材料与器件科学家智库磁性材料与器件专家委员会常务委员、中国仪器仪表学会仪表功能材料分会电子元器件关键材料与技术专业委员会委员、国家自然科学基金/山东省自然科学基金/青岛市高新技术企业评审专家、SCI期刊《Frontiers ...Detials

Direct Growth of Ultrathin NiCo2O4/NiO Nanosheets on SiC Nanowires as a Free-Standing Advanced Electrode for High-Performance Asymmetric Supercapacitors

Release time:2021-03-15  Hits:

  • Key Words:NiCo2O4/NiO nanocomposites; SiC nanowires; Hydrothermal method; Hybrid electrode; Asymmetric supercapacitor
  • Abstract:In this paper, we successfully employed SiC nanowires (SiC NWs) with splendid anticorrosion, antioxidation, heat-resistant properties, excellent conductivity, and large specific surface area directly deposited on carbon cloth (CC) as scaffolds to grow first the loose, porous and ultrathin NiCo2O4/NiO nanosheets (NiCo2O4/NiO NSs) via a facile hydrothermal technology coupled with annealing treatment to form a free-standing and stable hybrid electrode for asymmetric supercapacitor (ASC). Benefiting from the smart combination of SiC NWs and NiCo2O4/NiO NSs, illustrating a promising synergistic strategy, the electrode delivered an ultrahigh specific capacitance of 1801 F g(-1) at 1 mA cm(-2) as well as a remarkable rate capability of 1499 F g(-1) at 10 mA cm(-2). Furthermore, the additive-free functionalized SiC NWs@NiCo2O4/NiO NSs on CC acted as the positive electrode, assembled with the activated carbon (AC) on nickel foam (NF) negative electrode to fabricate an advanced ASC with intriguing electrochemical performances in terms of huge energy density (60 Wh kg(-1) at 1.66 kW kg(-1)) in addition to exceptional cycling stability (90.9% capacitance retention after 2000 cycles). This novel strategy can not only further widen the application of SiC NWs-based materials but also provide new insight into the development of next-generation supercapacitors with high energy/power densities.
  • Volume:4
  • Issue:7
  • Translation or Not:no