青岛科技大学  English 
张建明
赞  

教师拼音名称:zhangjianming

手机版

访问量:

最后更新时间:..

Thermal-oxidation degradation of polylactic acid/cellulose nanocrystal composites: Effects of surface chemistry

关键字:POLY LACTIC-ACID; STABLE CELLULOSE NANOCRYSTALS; PHOSPHORIC-ACID; SULFURIC-ACID; HYDROLYSIS; KINETICS; BEHAVIOR; NANOCOMPOSITES; CRYSTALLINITY; NANOCELLULOSE

摘要:Cellulose nanocrystal (CNC) is one of the most attractive renewable nano-fillers for polylactic acid (PLA). Depending on the production routes and starting cellulose sources, CNC possesses different surface chemistry, surface charge density, and morphology. However, the effect of the CNC surface chemistry on the thermaloxidation degradation behaviors of PLA/CNC composites is still elusive, although it is a crucial factor in determining the hot processing and service of composites. In this work, sulfated (CNC-S), carboxylated (CNC-O), and uncharged CNC (CNC-Cl) were produced and compounded with PLA via a two-step masterbatch method, respectively. The thermal-oxidation degradation behaviors of the obtained composites were systematically investigated to elucidate their degradation mechanisms. Results show that the surface uncharged CNC produced by hydrochloric acid hydrolysis contributes to the thermal-oxidation stability of composites, but is more prone to agglomerate due to the lack of electrostatic repulsion. Compared with uncharged CNC, negatively charged CNCs (CNC-S and CNC-O) appear better dispersion state in the PLA matrix. However, PLA/CNC-S composites present relatively lower weight loss temperature and degradation activation energy due to the acceleration of desulfation process on thermal-oxidation degradation. Contrary to expectations, the addition of carboxylated CNC has almost no negative effect on the thermal oxygen stability of PLA because the decarboxylation reaction during melt-processing converts carboxyl groups to volatile by-products. This study sheds light on the thermal-oxidation degradation mechanism of PLA/CNC composites and will be a valuable reference for further research into the degradation of other bio-based polymeric materials.

卷号:202

期号:

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn