青岛科技大学  English 
张建明
赞  

教师拼音名称:zhangjianming

手机版

访问量:

最后更新时间:..

Natural Rubber Latex Reinforced by Graphene Oxide/Zwitterionic Chitin Nanocrystal Hybrids for High-Performance Elastomers without Sulfur Vulcanization

关键字:MECHANICAL-PROPERTIES; CELLULOSE NANOCRYSTALS; CROSS-LINKING; INTERFACIAL INTERACTION; THERMAL-CONDUCTIVITY; SURFACE-CHEMISTRY; OXIDE; NANOCOMPOSITES; COMPOSITES; ENHANCEMENT

摘要:Natural rubber (NR) demonstrates excellent mechanical strength and tensile elasticity after vulcanization. However, the sulfur curing system will generate many problems, including the usage of toxic accelerators, blooming, and unrecyclable products. Therefore, it is a big challenge to prepare high-performance elastomers without sulfur vulcanization in the natural rubber (NR) industry. Here, a small amount of graphene oxide (GO)/zwitterionic chitin nanocrystals (NC) hybrids (GC) are first introduced in NR latex to reinforce unvulcanized NR. The NR/GC nanocomposite exhibits a high tensile strength of 19.2 MPa and a large breaking elongation of 825.9%, rivaling that of sulfur-vulcanized rubber. NC with amino and carboxyl groups can act as a macromolecular bridge and enhance the interfacial interaction between GO sheets and NR particles due to its strong attraction to both of them. Moreover, the dispersion of GO in NR is dramatically improved after adding NC due to the hybrid-synergetic effect. Thus, the formed uniform hybrid nanofiller networks strongly absorbed on NR macromolecules can significantly enhance the mechanical properties of nanocomposites. As a concept of proof, the medical gloves prepared by NR/GC latex show better performances than those of the vulcanizates, including good recycle ability, higher water vapor permeability, and good hiocompatihility.

卷号:9

期号:18

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn