中文

Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis

Hits:

  • Key Words:CARBON NANOFIBER AEROGELS; NONSTEROIDAL ANTIINFLAMMATORY DRUGS; HIGH-PERFORMANCE SUPERCAPACITOR; MESOPOROUS MATERIALS STARBON(R); CELLULOSE NANOCRYSTAL AEROGELS; LINKED CHITOSAN HYDROGELS; CHEMICAL-VAPOR-DEPOSITION; OXIDE COMPOSITE AEROGEL; PHASE-CHANGE COMPOSITES; IONIC LIQUID SOLUTION

  • Abstract:The highly efficient utilization of bioresources and natural organic wastes has attracted great attention, due to the high-speed consumption and shortage of energy in modern society. Aerogels, attributable to their outstanding properties and potential applications in diverse fields, have been a major topic of innovative materials research in the last decades. While previously the scientific community has mainly focused on inorganic-and plastic-based aerogels, recent years have witnessed a growing interest in their biomass-based counterparts. In fact, numerous studies on the fabrication, modification, and applications of cellulose, polysaccharide, protein, peptide, and other bio-derived aerogels have been widely reported. In this review, we focus on recent advances in the biomass-based aerogels field. The analysis that we perform ranges from their structural design to routes for functional tailoring, and encompasses resource-efficient applications; the aim is to provide a comprehensive review based on a robust analysis of available data. The fabrication techniques, structure and properties of biomass-based aerogels are introduced, together with their chemical, mechanical, electrical, optical, and biological properties. In addition, the structural design, functional tailoring, and applications of biomass-based aerogels are demonstrated. Furthermore, we enrich the actual literature state-of-the-art with a broad sustainability analysis, that compares biomass-based aerogels to the most studied inorganic/plastic-based counterparts. To this end, we perform a comparison with inorganic-and plastic-based aerogels by sustainability footprint analysis, which accounts for 12 sustainability parameters on environmental, social, and techno-economic impacts. This review will guide readers in understanding the fabrication of biomass-based aerogels, together with their structural and functional adjustment, through comprehensively presenting the state-of-the-art on their sustainable applications in fields as diverse as biomedical engineering, energy materials, nanodevices, chemical engineering, and environmental science.

  • Volume:125

  • Issue:

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..