中文

Simultaneous improvement of thermal stability and redispersibility of cellulose nanocrystals by using ionic liquids

Hits:

  • Key Words:Cellulose nanocrystal; Ionic liquids; Thermal stability; Redispersibility

  • Abstract:Cellulose nanocrystals (CNCs) are predominantly obtained by the traditional sulfuric acid hydrolysis process. However, as-prepared CNCs powder features low thermal stability and poor redispersibility due to the existence of sulfonate groups and the hydrogen bond interaction among particles. Herein, by mixing the ionic liquid [BMIm][BF4] with freshly prepared CNCs without dialysis through a simple rotary evaporate procedure, the simultaneous improvement of thermal stability and redispersibility of CNCs has been achieved. By combining FTIR, TGA and DLS measurements, the critical role of rotary evaporates process for improving the thermal stability of CNCs has been discussed. Furthermore, the poly(lactic acid) (PLLA)/IL-CNC nanocomposites with enhanced mechanical properties were prepared by the melt-mixing method. This study provides a green and simple strategy for preparing dried CNC powders, which has a great potential in large-scale production of fully bio-based nanocomposites.

  • Volume:186

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..