青岛科技大学  English 
张方坤
赞  

硕士生导师  

教师拼音名称:zhangfangkun

电子邮箱:

入职时间:2019-09-02

学历:博士研究生

性别:男

联系方式:18554911864

学位:工学博士

毕业院校:大连理工大学

学科:

化学工程

控制理论与控制工程

手机版

访问量:

最后更新时间:..

Design and optimization for the separation of xylene isomers with a novel double extractants-based extractive distillation

关键字:P-XYLENE; REACTIVE DISTILLATION; SIMULATION; MIXTURE

摘要:Xylene is a crucial chemical raw material, serving as a synthetic monomer and solvent extensively employed in coating, medicine, rubber and other industries. It contains of three isomers: o-xylene (OX), m-xylene (MX), and pxylene (PX), their separation is considered a worldwide challenge due to their extremely close boiling points. A novel extractive distillation based on double extractants is first proposed to separate these isomers in this paper, while it was considered impractical to separate these isomers by distillation technology alone in the past. Through the analysis of residual curve and extractant screening, two potential solvents, i.e., N-Methylpyrrolidone (NMP) and Tetramethylene sulfone (Sul) were used as extractants, and then the separation sequences were designed and optimized. The extractive distillation processes were optimized by sequential iterative method according to the minimum total annual cost (TAC), and the best separation sequence and process parameters were determined. For comparison, it was found that the optimized double extractant-based extractive distillation (DEED) process has the best economic performance with TAC of 5.72x10(6)$, and the energy consumption was greatly reduced by 41.2% compared to the single extractant-based extractive distillation (SEED). This article provides a new perspective on energy-efficient distillation technology for industrial xylene separation and purification production.

卷号:139

期号:

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn