袁勋

教授

教授 博士生导师 硕士生导师

电子邮箱:

所在单位:材料化学教研室

学历:博士研究生

办公地点:四方校区CCE1306

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Controlled synthesis of bismuth oxychloride-carbon nanofiber hybrid materials as highly efficient electrodes for rocking-chair capacitive deionization

发布时间:2021-03-15 点击次数:

关键字:FLOW-THROUGH; DESALINATION PERFORMANCE; WATER DESALINATION; FARADAIC REACTIONS; CHARGE EFFICIENCY; MEMBRANE; CDI; COMPOSITES; REMOVAL; ENERGY
摘要:Rocking-chair Capacitive Deionization (RCDI) is one of the most promising cell architectures for highly efficient capacitive deionization (CDI) to address the fresh-water shortage, and developing Cl--removal electrode materials of RCDI toward highly-efficient desalination (with high capacity and rate) is of utmost urgency. Herein we report our design on high-performance Cl--removal electrode material via controllable anchoring of bismuth oxychloride nanostructures (BiOCl; such as nanoplates, nanoflowers, and nanospheres) on electrospun carbon nanofibers (BiOCl-CNF) for RCDI. The BiOCl-CNF based RCDI system displays excellent Cl- storage capacitance as well as freestanding characteristics, which enables it to be a perfect electrode candidate for RCDI. By properly tailoring the composition of the hybrid material, the BiOCl-CNF based RCDI displays outstanding desalination efficacy in terms of desalination capacity (124 mg.g(-1)), energy consumption (66.8 Wh.m(-3)), and desalination rate (0.52 mg.g(-1).s(-1)), which are far more superior than the existing systems from the literatures, exemplifying the critical importance of delicate design in the Cl--removal electrode materials for improving the desalination performance.
卷号:403
是否译文: