袁勋

教授

教授 博士生导师 硕士生导师

电子邮箱:

所在单位:材料化学教研室

学历:博士研究生

办公地点:四方校区CCE1306

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Mn2O3 nanoflower decorated electrospun carbon nanofibers for efficient hybrid capacitive deionization

发布时间:2021-03-15 点击次数:

关键字:REDUCED GRAPHENE OXIDE; DESALINATION PERFORMANCE; BACTERIAL-CELLULOSE; WATER DESALINATION; FARADAIC REACTIONS; CHARGE EFFICIENCY; ANODE; COMPOSITES; POLYHEDRA; BEHAVIOR
摘要:Developing highly efficient electrochemical desalination techniques with both high salt removal capacity as well as sufficient longterm durability is urgently required in settling the global water crisis. Herein, we developed a high-performance hybrid capacitive deionization (HCDI) through the deployment of freestanding, Mn2O3 nanoflower decorated carbon nanofibers (CNF@Mn2O3) with pseudo-capacitive behavior as the electrode. The CNF@Mn2O3 synthesized via electrospinning and in-situ deposition of Mn2O3 shows both excellent pseudocapacitive performance and freestanding nanostructure, which enables the CNF@Mn2O3-based HCDI system to exhibit superior desalination performance(27.43 mg.g(-1)) as well as long-term stability (14.3% declination for 30 cycles). Such outstanding desalination performance should be ascribed to the high pseudo-capacitance, excellent charge transfer performance, and the freestanding nature of the CNF@Mn2O3. This study is interesting because it exemplifies the importance of designing pseudo-capacitive electrode materials for constructing a high-performance HCDI system, which could cast light on the further development of high-efficiency electrochemical desalination systems.
卷号:494
是否译文: