论文成果
Interfacial Ru nanoclusters in tandem with single atoms on oxygen-vacancy regulated CeO2 for anion exchange membrane seawater-splitting
点击次数:
关键字:METAL-SUPPORT INTERACTIONS; HYDROGEN EVOLUTION; ACTIVE-SITES; CATALYSTS; NANOPARTICLES; PERFORMANCE; SPILLOVER; CO2
摘要:A hydrogen spillover-bridged water dissociation/hydrogen formation could concurrently promote Volmer/Tafel process and improve the efficiency of hydrogen evolution reaction (HER) under alkaline conditions. However, it is still challenging to promote occurrence of hydrogen spillover for the large interfacial transport barriers of H2O and hydrogen on active sites. Herein, the strategy of energy barrier gradient to induce hydrogen spillover was proposed by constructing Ru nanoclusters coupled with single atom onto oxygen vacancy cerium dioxide (Ru/CeO2-Ov-2). Density functional theory (DFT) calculations uncover that the adsorption/desorption of H2O occurs at the Ru clusters sites and then the dissociated H* spontaneously overflows from Ru clusters with high binding energy into the adjacent Ru single atom sites with low binding energy, which facilitate the hydrogen formation. Consequently, the synthesized Ru/CeO2-Ov-2 exhibits a small overpotential of 41 mV at 10 mA cm 2 and good stability at 500 mA cm 2 for 100 h in alkaline seawater, which could be ascribed to the rapid hydrogen spillover and strong coupling interaction between Ru and CeO2-OV. This work provides a novel insight that synthesizing cooperative sites with energy barrier gradient helps to promote hydrogen spillover and accelerate the Volmer/Tafel process of HER. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
卷号:102
期号:
是否译文:

徐广蕊

硕士生导师

教师拼音名称:xuguangrui

电子邮箱:

学历:博士研究生

学位:工学博士

毕业院校:陕西师范大学

所属院系:材料科学与工程学院

邮编 :

邮箱 :

通讯/办公地址 :

邮箱 :

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..