论文成果
Manganese doping motivated cobalt site and unique hexagonal morphology to boost electrochemical water electrolysis
点击次数:
关键字:Water electrolysisOxygen defectElectronic structureElectron densityMorphology regulation
摘要:Undesirable conductivity and insufficient electrocatalytic activity are the current bottlenecks of cobalt tetroxide from achieving efficient water electrolysis. Herein, by optimizing the internal electronic structure and the controlled design of the morphology, we design a unique hexagonal Mn-Co3O4-200 nanostructure that exhibits superior water electrolysis performance with low overpotentials and excellent long-term durability under strongly alkaline conditions, outperforming many other previously reported cobalt oxide-based compounds. Theoretical combined with characterization analysis indicates that introduced Mn atoms induce an increase in the high spin-orbital occupancy of Co2 to optimize free energy of the OOH*-> O2 step, which excites the catalytic activity of the Co sites, resulting in a substantial increase in the catalytic activity of the Mn-Co3O4. Furthermore, we briefly summarize the catalytic activity iation pattern of several catalysts with different microscopy morphologies and innovatively propose a more intuitive means to evaluate their exposed active areas. Compared with other morphologies, the special hexagonal morphology with abundant pores and large effectively exposed catalytic surface area can promote the exposure rate of active centers, mass transfer of electrolytes and diffusion of hydrogen and oxygen in the electrocatalytic process, thus accelerating the rate of electrocatalytic reactions.
卷号:648
期号:-
是否译文:

薛鸿垚

硕士生导师

教师拼音名称:xuehongyao

性别:男

所属院系:机电工程学院

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..