论文成果

Rheology and dispersion behavior of high-impact polystyrene/ethylene-vinyl acetate copolymer/TiO2 nanocomposites

发布时间:2021-03-15  点击次数:

关键字:dispersions; nanocomposites; polystyrene; rheology

摘要:TiO2 nanoparticles were introduced into high-impact polystyrene (HIPS) in the form of a master batch in which TiO2 was predispersed in composites of HIPS and ethylene-vinyl acetate copolymer (EVA) by melt compounding. The resulting materials were analyzed with a Rosand Precision rheometer, transmission electron microscopy, atomic force microscopy, and Ultraviolet-visible light spectrophotometry. The results showed that the introduction of TiO2 nanoparticles into HIPS influenced the apparent viscosity of the composites to a rather small extent. The addition of EVA could regulate the rheological behavior of the HIPS/TiO2 master batch greatly. EVA helped the dispersions of the agglomerates of TiO2 nanoparticles in the flow; this was featured by the distinct yielding in the flow after the introduction of EVA, as well as the large change in the non-Newtonian indices. The dispersions of the HIPS/TiO2 master batch in the HIPS matrix were improved greatly by the addition of EVA. TiO2 nanoparticles were dispersed randomly in HIPS/EVA/TiO2 nanocomposites. The dispersion improvement of the HIPS/EVA/TiO2 master batch was also proved by atomic force microscopy and ultraviolet-visible spectroscopy investigations. The mechanical properties of HIPS/EVA/TiO2 nanocomposites with low TiO2 contents were slightly higher than those of pure HIPS. (c) 2006 Wiley Periodicals, Inc.

卷号:100

期号:6

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn

访问量:| 最后更新时间:--| 开通时间:-- |手机版