谢广文   Professor

谢广文,教授,博士,长期从事纳米材料、微晶与非晶态材料研究与应用,在纳米材料表面改性、非晶态催化材料等领域取得了许多创新性成果。近年来在《燃料化学学报》、Chemical Engineering Journal、Carbon、Green Energy & Environment、Journal of Materials Chemistry A、Applied Surface Science、 ACS Applied Materials & Interfaces、Journal of Power Sources、Renewable Energy、Surface and Coatings Technolo...Detials

Highly enhanced photoelectrochemical cathodic protection performance of the preparation of magnesium oxides modified TiO2 nanotube arrays

Release time:2021-03-15  Hits:

  • Key Words:TiO2 nanotube arrays; Magnesium oxides; Photoelectrochemical cathodic protection; Modified TiO2
  • Abstract:The magnesium oxide modified TiO2 nanotube arrays (TiO2 NTs) was prepared to investigate the photoelectrochemical (PEC) cathodic protection performance to 304 stainless steel (SS 304). With the annealing treatment at different temperature, the surface of the modified materials changed remarkably. The film-like Mg(OH)(2) obtained at 400 degrees C transformed to MgO particles after treatment at 500 degrees C and 600 degrees C. Further thermal processing at 700 degrees C enables MgTixOy@TiO2 shell-core structure. Using photoelectrochemical approaches to study the series samples, the cathodic protection performance of the modified TiO2 NTs has significantly improved. The magnesium oxides modified TiO2 NTs treated at 600 degrees C (Ti-Mg-O 600) shows the best PEC cathodic protection to the underneath steel. Further investigation shows that the highly enhanced PEC cathodic protection performance of Ti-Mg-O 600 was attributed to the effective separation of photogenerated carriers, the increase of carrier concentration and the negative shift of the conduction band potential.
  • Volume:834
  • Translation or Not:no