Key Words:fucoidan; polyethyleneimine; magnetic nanoparticles; polyphosphate; adsorption properties
Abstract:Fucoidan is a kind of natural water-soluble fucose-rich sulfated polysaccharide with promising applications in the food and pharmaceutical industry. However, the traditional methods for fucoidan recovery from aqueous solution are expensive, time-consuming, and environmentally unfriendly. In this work, polyethyleneimine functionalized magnetite nanoparticles (PEI-MNPs) with well-defined core-shell structures were prepared by a Layer by-Layer (LbL) approach using sodium tripolyphosphate (STPP) as a cross-linker. The as-prepared PEI-MNPs showed improved adsorption capability towards fucoidan at pH 4-8 due to the high density of cationic groups on the surfaces and the absence of internal pores. It was found that the adsorption process of fucoidan onto PEIMNPs can reach to equilibrium in 50 min at room temperature. The maximum qe derived from the Langmuir isotherm at room temperature was 169.1 mg per g at a pH of 7. A selective fucoidan capture over a model protein BSA can be realized by adjusting pH (6-8) and salt concentration (0.5-2.5 M). The PEI-MNPs loading with fucoidan can be isolated from the final products by a neodymium magnet and regenerated by 4 M NaCl solution as stripping reagent. Therefore, this novel kind of PEI-MNP could be a promising candidate for highly efficient and recyclable recovery of fucoidan from an aqueous solution.
Volume:229
Issue:-
Translation or Not:no