青岛科技大学  English 
王莉
赞  

副教授 硕士生导师  

教师拼音名称:WL

入职时间:2006-07-14

联系方式:13854288388

职称:副教授

手机版

访问量:

最后更新时间:..

Exonuclease III-Aided Autocatalytic DNA Biosensing Platform for Immobilization-Free and Ultrasensitive Electrochemical Detection of Nucleic Acid and Protein

关键字:

摘要:Homogenous electrochemical biosensor has attracted substantial attention owing to its simplicity, rapid response, and improved recognition efficiency compared with heterogeneous biosensor, but the relatively low detection sensitivity and the limited detection analytes prohibit its potential applications. To address these issues, herein, a simple, rapid, isothermal, and ultrasensitive homogeneous electrochemical DNA biosensing platform for target DNA and protein detection has been developed on the basis of an exonuclease HI (Exo III)-aided autocatalytic target recycling strategy. A ferrocene-labeled hairpin probe (HP1) is ingeniously designed, which contains a protruding DNA fragment at 3'-termini as the recognition unit for target DNA. Also, the DNA fragment that could be used as secondary target analogue was introduced, but it was caged in the stem region of HP1. In the presence of target DNA, its recognition with the protruding fragment of HP1 triggered the Exo III cleavage process, accompanied with the target recycling and autonomous generation of secondary target analogues. This accordingly resulted into the autonomous accumulation of ferrocene-labeled mononucleotide, inducing a distinct increase in the electrochemical signal owing to its elevated diffusivity toward indium tin oxide (ITO) electrode surface. The autocatalytic biosensing system was further extended for protein detection by advising an aptamer hairpin switch with the use of thrombin as a model analyte. The current developed autocatalytic and homogeneous strategy provided an ultrasensitive electrochemical detection of DNA and thrombin down to the 0.1 and 5 pM level, respectively, with a high selectivity. It should be further used as a general autocatalytic and homogeneous strategy toward the detection of a wide spectrum of analytes and may be associated with more analytical techniques. Thus, it holds great potential for the development of ultrasensitive biosensing platform for the applications in bioanalysis, disease diagnostics, and clinical biomedicine.

卷号:86

期号:8

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn