论文成果
Biomass and waste plastics chemical looping co-gasification for hydrogen-electricity-DME conservation and recycling based on machine learning
点击次数:
关键字:SIMULATION; MIXTURES; GASIFIER; ENERGY; SYNGAS
摘要:The reasonable utilization of organic solid waste can solve the problem of fossil energy shortage, but there are also challenges of high processing cost and difficulty. In this paper, a novel polygeneration system integrating biomass and waste plastic chemical looping co-gasification (BPCLG) for hydrogen production, power generation, and dimethyl ether (DME) synthesis is established and optimized by coupling process simulation and machine learning (ML) to achieve efficient utilization of organic solid waste. The artificial neural network (ANN) is employed to develop surrogate models for predicting the molar fractions of critical components in syngas and the system energy consumption. Then the non-dominated sorting genetic algorithm-II (NSGA-II) is utilized to optimize two objectives including the highest molar fraction of hydrogen in syngas and the lowest energy consumption. The optimized polygeneration system increased hydrogen production by 4.36 % and reduced energy consumption by 3.59 %. This work advances the resourceful utilization of organic solid waste while alleviating the energy crisis.
卷号:318
期号:
是否译文:

田文德

教师拼音名称:tianwende

所属院系:环境与安全工程学院

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..