论文成果
Prediction of CO2 solubility in blended amine solutions using machine learning based on structural encoding
点击次数:
关键字:CARBON-DIOXIDE; AQUEOUS MIXTURES; N-METHYLDIETHANOLAMINE; EQUILIBRIUM SOLUBILITY; ACID GASES; DIETHANOLAMINE; ABSORPTION; CAPTURE; MONOETHANOLAMINE; PIPERAZINE
摘要:In this study, the prediction of CO2 solubility in blended amine is investigated using machine learning (ML) techniques. A novel feature engineering method of blended amine structure encoding (BSE) was developed and combined with four models: eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Convolutional Neural Network (CNN), and Deep Neural Network (DNN). The newly developed BSE method demonstrated higher regression prediction performance compared to traditional blended amines critical property descriptors. The BSE-XGBoost model achieved an R2 of 0.984 and an MSE of 0.001, showing the best performance in predicting CO2 solubility in blended amine. Additionally, a genetic algorithm (GA) is employed to identify the optimal blending ratio for maximum CO2 solubility under specific conditions. This work highlights the potential of combining ML techniques with innovative feature engineering and optimization methods to enhance the accuracy and efficiency of CO2 solubility predictions in blended amines, providing valuable insights for industrial applications and future research in CO2 capture.
卷号:316
期号:
是否译文:

田文德

教师拼音名称:tianwende

所属院系:环境与安全工程学院

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..