论文成果
任务型教学模式与图式训练在英语课堂教学中的理论与方法
点击次数:
关键字:VAPOR-LIQUID-EQUILIBRIA; CARBON-DIOXIDE; HYDROGEN-SULFIDE; MONOETHANOLAMINE; MODEL; 2-AMINO-2-METHYL-1-PROPANOL; METHYLDIETHANOLAMINE; MIXTURES; ABSORPTION; GAS
摘要:In this study, a quantitative structure-property relationship (QSPR) model has been designed based on machine learning (ML) to offer a new method to accurately predict carbon dioxide (CO2) solubility in aqueous amine solutions. Molecular descriptors are used to denote representative features of the amine molecular structure supplemented with amine solution concentration, CO2 partial pressure, and temperature as inputs to the model. The coefficient of determination (R2) of the well-trained ML model reaches 0.971, and the average absolute deviation (AAD) of independent experimental validation is 4.785 %, effectively demonstrating the model's reliability and generalization performance. Finally, SHapley Additive exPlanations (SHAP) is adopted to reveal the contribution of different features to the model predictions, making the model more transparent and interpretable. Overall work provides a novel, low-cost, efficient method to predict equilibrium CO2 solubility in aqueous amine solution and offers a new perspective in developing advanced amine for CO2 capture.
卷号:354
期号:
是否译文:

田文德

教师拼音名称:tianwende

所属院系:环境与安全工程学院

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..