论文成果
PCA weight and Johnson transformation based alarm threshold optimization in chemical processes
点击次数:
关键字:
摘要:To alleviate the heavy load of massive alarm on operators, alarm threshold in chemical processes was optimized with principal component analysis(PCA) weight and Johnson transformation in this paper. First, few variables that have high PCA weight factors are chosen as key variables. Given a total alarm frequency to these variables initially, the allowed alarm number for each variable is determined according to their sampling time and weight factors. Their alarm threshold and then control limit percentage are determined successively. The control limit percentage of non-key variables is determined with 3σ method alternatively. Second, raw data are transformed into normal distribution data with Johnson function for all variables before updating their alarm thresholds via inverse transformation of obtained control limit percentage. Alarm thresholds are optimized by iterating this process until the calculated alarm frequency reaches standard level(normally one alarm per minute). Finally,variables and their alarm thresholds are visualized in parallel coordinate to depict their variation trends concisely and clearly. Case studies on a simulated industrial atmospheric-vacuum crude distillation demonstrate that the proposed alarm threshold optimization strategy can effectively reduce false alarm rate in chemical processes.
卷号:v.26
期号:08
是否译文:

田文德

教师拼音名称:tianwende

所属院系:环境与安全工程学院

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..