- 基于约翰逊转换的鲁棒化工过程监控方法
- 点击次数:
- 关键字:斯皮尔曼相关系数;TE过程;约翰逊转换;过程监控
- 摘要:化工厂中一个小故障可能导致大事故,从而造成生命财产损失和环境破坏。为了防止小故障演变成大事故,化学工业需要有效的过程监控来及时检测故障和诊断故障原因。传统化工过程监控方法主元分析法(Principal Component Analysis, PCA)假设数据服从高斯分布,实践中有时并不满足该条件。此外,其使用方差、协方差捕捉数据非线性变化时,鲁棒性较差。本工作提出一种改进的主元分析法—基于约翰逊转换的鲁棒过程监控方法。首先引入约翰逊正态转换(Johnson Transformation)使过程数据服从高斯分布;其次使用鲁棒性强的斯皮尔曼相关系数(Spearman Correlation Coefficient)矩阵代替传统主元分析法的协方差矩阵提取特征向量,构造特征空间;最后将过程数据投影到特征空间,使用T2和SPE统计量实施过程监控。将此方法应用于TE过程故障案例,并与PCA和核主元分析法(Kernel Principal Component Analysis, KPCA)对比,验证了此方法的有效性。
- 卷号:v.21
- 期号:12
- 是否译文:否