论文成果
Optimized principal component analysis and multi-state Bayesian network integrated method for chemical process monitoring and variable state prediction
点击次数:
关键字:PROCESS FAULT-DIAGNOSIS; DATA-DRIVEN; MODEL; PCA; CAUSALITY; SYSTEMS
摘要:Considering the weaknesses of traditional principal component analysis (PCA) in dealing with nonlinear correlations and non-Gaussian distribution data, PCA is optimized by replacing covariance matrix with Spearman ranking correlation coefficient (SRCC) matrix and introducing Gaussian transition by Johnson transformation. Because the commonly used BN that simply identifies a node as faulty or normal states sometimes fails to diagnose critical operation information, multi-state Bayesian network (MBN) is developed to recognize a node into multiple states. To fulfill process monitoring task, the optimized PCA (OPCA) and MBN integrated method (OPCA-MBN) is proposed in this paper. OPCA is utilized to detect faults and provide evidence to MBN for diagnosing fault or normal oscillation propagation pathways. In the modeling process of MBN, the causal relationships between tangled internal variables are determined using Transfer entropy and process knowledge. The practicability and effectiveness of the proposed method are demonstrated through the application in the Tennessee Eastman (TE) process in comparison with two-state BN.
卷号:430
期号:
是否译文:

田文德

教师拼音名称:tianwende

所属院系:环境与安全工程学院

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..