论文成果
基于数据降维和深度学习的化工故障识别
点击次数:
关键字:故障识别;特征提取;特征选择;化工过程;长短期记忆网络
摘要:数据降维是化工过程故障识别的重要组成部分,主要分为特征提取和特征选择两种方法。为了探索不同数据降维方法对化工过程故障识别的影响,提出了基于数据降维和深度学习的故障识别方法。首先,生成拓扑映射(GTM)得到了原始过程数据的低维空间表示,通过Spearman秩相关系数(SRCC)得到了变量之间的相关性,获得了关键变量。然后,长短期记忆网络(LSTM)学习关键变量集的深层次特征并识别化工过程的故障。田纳西-伊斯曼(TE)过程的应用表明,GTM-LSTM更适用于跃变型故障的识别,SRCC-LSTM对所有类型的故障识别效果都较好,其更适用于化工过程数据降维。
卷号:v.28;No.202
期号:10
是否译文:

田文德

教师拼音名称:tianwende

所属院系:环境与安全工程学院

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..