论文成果
Fault monitoring based on mutual information feature engineering modeling in chemical process
点击次数:
关键字:Fault detection;Big data - Failure analysis - Principal component analysis - Process monitoring - Professional aspects
摘要:A large amount of information is frequently encountered when characterizing the sample model in chemical process. A fault diagnosis method based on dynamic modeling of feature engineering is proposed to effectively remove the nonlinear correlation redundancy of chemical process in this paper. From the whole process point of view, the method makes use of the characteristic of mutual information to select the optimal variable subset. It extracts the correlation among variables in the whitening process without limiting to only linear correlations. Further, PCA (Principal Component Analysis) dimension reduction is used to extract feature subset before fault diagnosis. The application results of the TE (Tennessee Eastman) simulation process show that the dynamic modeling process of MIFE (Mutual Information Feature Engineering) can accurately extract the nonlinear correlation relationship among process variables and can effectively reduce the dimension of feature detection in process monitoring.<br/> © 2018 Elsevier B.V.
卷号:27
期号:10
是否译文:

田文德

教师拼音名称:tianwende

所属院系:环境与安全工程学院

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..