论文成果
Alarm clustering analysis and ACO based multi-variable alarms thresholds optimization in chemical processes
点击次数:
关键字:FAR; MAR; Alarm threshold optimization; Clustering analysis; ACO; Variable weight
摘要:In chemical process, excessive alarms, high false alarm rate (FAR), and high missed alarm rate (MAR) generated by unreasonable setting to variable alarm thresholds are the main causes of affecting operation stability and device safety. In this paper, a clustering analysis based method was proposed to optimize the variable alarm thresholds. Variables are first clustered into groups using standardized Euclidean distance before variable weights are given by entropy weight method. Second, the probability density functions of the variables are fitted with process data under normal and abnormal conditions. An objective function about the FAR, MAR, and average alarm delay (AAD) is then established with variable weight and alarm delay. Finally, the objective function is optimized to find the optimal alarm thresholds using ant colony optimization (ACO) method. Case study of an industrial atmospheric-vacuum crude distillation shows that the proposed method can effectively reduce FAR and MAR. (C) 2017 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
卷号:113
是否译文:

田文德

教师拼音名称:tianwende

所属院系:环境与安全工程学院

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..