论文成果

Creating smart chlorine-resistant polyamide reverse osmosis membranes via self-healing temperature-responsive nanocontainer functionalization

发布时间:2024-12-24  点击次数:

关键字:REJECTION

摘要:We present an innovative solution for improving the chlorine resistance of polyamide RO membranes. Our method involves the design of temperature-specific (70 degrees C) responsive nanocontainers (T-RNC) through layer-bylayer self-assembly on a monodisperse SiO2 nanoparticle core. These nanocontainers, measuring 25 nm in size, are embedded within a thin film nanocomposite (TFN) membrane, resulting in a homogeneous surface structure with increased roughness and strong hydrophilicity. The precise temperature-responsive properties of T-RNC enable the dissolution of the encapsulated shell material, releasing SS molecules containing amino and carboxyl groups. These molecules effectively bind to broken amid bonds within the PA layer, repairing structural damage caused by chlorination and significantly enhancing the membrane's chlorine resistance. Extensive testing revealed that the temperature-responsive TFN membrane maintained over 90 % NaCl rejection, even after exposure to 18,000 ppm.h of chlorination. In contrast, the control group lacking temperature-responsive TFN and TFC membranes exhibited reduced rejection rates of 62.15 % and 71.24 %, respectively. Additionally, the TFN membranes exhibited excellent water permeability and resistance to contamination. Our findings offer promising avenues for researchers to explore the development of intelligent and chlorine-resistant polyamide RO membranes, with a particular focus on chlorination-remediation techniques.

卷号:500

期号:

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn

访问量:| 最后更新时间:--| 开通时间:-- |手机版