论文成果

Recent advances in interface engineering strategy for highly-efficient electrocatalytic water splitting

发布时间:2024-01-19  点击次数:

关键字:THIN-FILM COMPOSITE; NANOFILTRATION; NANOCOMPOSITES; NANOPARTICLES; PERFORMANCE; PVA

摘要:Improving the performance of reverse osmosis membranes remains great challenge to ensure excellent NaCl rejection while maintaining high water permeability and chlorine resistance. Herein, temperature-responsive intelligent nanocontainers are designed and constructed to improve water permeability and chlorine resistance of polyamide membranes. The nanocontainer is synthesized by layer-by-layer self-assembly with silver nanoparticles as the core, sodium alginate and chitosan as the repair materials, and polyvinyl alcohol as the shell. When the polyamide layer is damaged by chlorine attack, the polyvinyl alcohol shell layer dissolves under temperature stimulation of 37 ?, releasing inner sodium alginate and chitosan to repair broken amide bonds. The polyvinyl alcohol shell responds to temperature in line with actual operating environment, which can effectively synchronize the chlorination of membranes with temperature response and release inner materials to achieve self-healing properties. With adding temperature-responsive intelligent nanocontainers, the NaCl rejection of thin film composite membrane decreased by 15.64%, while that of thin film nanocomposite membrane decreased by only 8.35% after 9 chlorination cycles. Effective repair treatment and outstanding chlorine resistance as well as satisfactory stability suggest that temperature-responsive intelligent nanocontainer has great potential as membrane-doping material for the targeted repair of polyamide reverse osmosis membranes.

卷号:17

期号:9

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn

访问量:| 最后更新时间:--| 开通时间:-- |手机版