教授
博士生导师
硕士生导师
教师拼音名称:shixinyan
电子邮箱:
所在单位:橡塑材料与工程省部共建教育部重点实验室
职务:橡塑材料与工程省部共建教育部重点实验室常务副主任
学历:博士研究生
办公地点:青岛市舞阳路51-1号青岛科技大学橡塑楼406房间
性别:女
联系方式:0532-84022468
学位:博士
职称:教授
毕业院校:青岛科技大学
移动电话:
邮箱:
通讯/办公地址:
办公室电话:
最后更新时间:..
关键字:butyl rubber; carbon black dynamic properties; reinforcement; silica
摘要:Carbon black (N234) and silica (Vulksail N) with a silane coupling agent Si-69 were chosen as reinforcing fillers in butyl rubber (IIR). The rheological behavior of the IIR compounds and the dynamic mechanical properties of IIR vulcanizates were investigated with a rubber processing analyzer and dynamic mechanical analysis (DMA) to examine the filler dispersion in the rubber matrix and the interaction between filler and matrix. The data indicated that the N234 filled IIR compounds had more filler networks than those filled with silica. Filler networks first appeared at 30phr N234 and 45phr silica with silane coupling agent Si-69. The interaction between N234 and IIR was far stronger than that between silica and IIR. However, the silica Vulksail N filled IIR had better wet-grip and lower rolling resistance compared to the carbon black-filled IIR should IIR be chosen as a substitute of styrene-butadiene rubber (SBR) in tire tread. The reinforcing factor, R, R (related to the difference in tan d peak height at T-g for the filled and nonfilled rubbers), also demonstrated that the N234-IIR interaction was stronger than for the silica. IIR with 30phr N234 exhibited the largest tensile strength, 20.1MPa, for those vulcanizates examined. The tensile and tear strengths of N234 filled IIR were higher than those of IIR with similar amounts of silica. Thus, it was concluded that N234 is a more active reinforcing filler in IIR than silica (Vulksail N) even with a silane coupling agent (Si-69).
卷号:55
期号:9
是否译文:否