Key Words:
Abstract:A sequence of radar echo maps can visually show the motion and variation trends of the echo area, making it a common tool for precipitation forecasting. The spatiotemporal context reveals the correlations of variation trends among different parts within the echo area. This paper proposes a novel precipitation forecasting model, ISTC-SA-MIM (Interactive Spatiotemporal Context Learning with Self-Attention and Memory in Memory), based on the MIM. Leveraging the spatiotemporal interactions and self-attention mechanism of the ISTC-SA structure, the proposed model effectively captures both long-term and short-term spatiotemporal contexts. By memorizing the spatiotemporal context and non-stationary information, ISTC-SA-MIM can accurately predict the motion and variation trends of the echo area. Radar echo data from the Qingdao station are collected as the dataset to evaluate the commonly used spatiotemporal models and ISTC-SA-MIM. The experiments demonstrate that ISTC-SA-MIM can predict the variation trends of the echo area more accurately by learning the spatiotemporal context.
Volume:105
Issue:2-3
Translation or Not:no