青岛科技大学  English 
马伯江
赞  

教授

教师拼音名称:mabojiang

职称:教授

手机版

访问量:

最后更新时间:..

The in-situ re-melting post-treatment on properties of atmosphere plasma-sprayed FeCoCrMoCBY amorphous alloy coating

关键字:CORROSION-RESISTANCE; BEHAVIOR

摘要:PurposeThis paper aims to verify weather atmospheric plasma spray (APS) in situ remelting posttreatment is effective for densifying the porous FeCoCrMoCBY amorphous alloy (FAA) coating and improving the antiabrasion and anticorrosion performances or not. Design/methodology/approachAPS was used to deposit and in situ densify FAA coating on the 40Cr substrate. Scanning electron microscope, X-ray diffractometer, energy dispersive spectroscopy, neutral salt spray, hardness and wear behavior test were used to evaluate the densifying effects. FindingsAPS remelting technology can effectively improve the hardness of the coating by reducing the porosity. After remelting at 30 kW power, the hardness of the coating increased by about 260 HV0.2 and the porosity decreased to 2.78%. The amorphous content of the coating is 93.9%, which is about 3.5% lower than original powders. The electrochemical impedance spectrum and neutral salt spray test results show that APS remelting can reduce the corrosion rate by about 62.7%. Originality/valueAPS remelting method is firstly proposed in this work to replace laser remelting or laser cladding methods. APS remelting method can effectively improve the corrosion and abrasion resistance of the FAA coating by increasing the densification with much low recrystallization, which is big progress for application of FAA coatings.

卷号:70

期号:1

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn