关键字:WEAR-RESISTANCE; MICROSTRUCTURE; CORROSION; BEHAVIOR
摘要:Fe-based amorphous alloys (FAA) have excellent anti-corrosion and anti-abrasive comprehensive performances. However, sprayed thin FAA coatings with high porosity cannot provide efficient protection, or even accelerate the corrosion rate of the substrate due to galvanic corrosion. Laser re-melting densifying is usually used to improve the anti-corrosion performance of sprayed coatings. There are two disadvantages of the common laser re-melting method, including crystallization and residual stress. In the present paper, a low density energy laser re-melting method was used to improve the performance of cold spraying (CS) FeCoCrMoBCY FAA coating on 40Cr substrate. The results show that the CS FAA coatings were crystallized partially during the melting process. The hardness of the coating is improved at the melting zone after laser re-melting, which improves the anti-abrasive performance. Potentiodynamic test results show that laser re-melting can decrease the corrosion rate, but the salt spray test indicates that low energy density re-melting cannot eliminate penetrated diffusion passage. Further optimization should be conducted to improve the anticorrosion performance for this method.
卷号:11
期号:6
是否译文:否