Gold nanoparticles-decorated peptide hydrogel for antifouling electrochemical dopamine determination
发布时间:2023-10-19
点击次数:
- 关键字:IN-VITRO
- 摘要:A reliable and brief ultralow fouling electrochemical sensing system capable of monitoring targets in complex biological media was constructed and validated based on gold nanoparticles-peptide hydrogel-modified screen-printed electrode. The self-assembled zwitterionic peptide hydrogel was prepared by a newly designed peptide sequence of Phe-Phe-Cys-Cys-(Glu-Lys)(3) with the N-terminal modified with a fluorene methoxycarbonyl group. The thiol groups on cysteine of the designed peptide are able to self-assemble with AuNPs to form a three-dimensional nanonetwork structure, which showed satisfactory antifouling capability in complex biological media (human serum). The developed gold nanoparticles-peptide hydrogel-based electrochemical sensing platform displayed notably sensing properties for dopamine determination, with a wide linear range (from 0.2 nM to 1.9 mu M), a low limit of detection (0.12 nM), and an excellent selectivity. This highly sensitive and ultralow fouling electrochemical sensor was fabricated via simple preparation with concise components that avoid the accumulation of layers with single functional material and complex activation processes. This ultralow fouling and highly sensitive strategy based on the gold nanoparticles-peptide hydrogel with a three-dimensional nanonetwork offers a solution to the current situation of ious low-fouling sensing systems facing impaired sensitivity and provides a potential path for the practical application of electrochemical sensors.
- 卷号:190
- 期号:5
- 是否译文:否