关键字:ANTIBACTERIAL; HYDROGELS; MECHANISM; SURFACE
摘要:Thermoplastic polyurethanes (TPUs) are extensively utilized in the biomedical field due to their exceptional mechanical properties and biocompatibility. However, the lack of antibacterial activity limits their application ranges. Nanoscopic particle-based additives with inherent antibacterial characteristics are regarded as promising strategies to prevent biomaterials-associated infection. Herein, a novel polymeric nanoparticle is prepared, which integrates chemically cross-linked epsilon-poly-l-lysine (CPL) and anionic surfactant-docusate sodium (DS). The cross-linked epsilon-poly-l-lysine/docusate sodium (CPL/DS) nanoparticle can be well dispersed in organic solvent and a polymer matrix, which is beneficial to endowing TPUs with synergistic miscibility and antibacterial properties. An antibacterial test showed that the CPL/DS nanoparticles have strong antibacterial activity against S. aureus. Moreover, the results of antibacterial experiments in vitro revealed that almost 100% of S. aureus could be killed by CPL/DS nanoparticle-embedded TPU film with a content of 0.5 wt %. In addition, all of the CPL/DS modified TPU films showed good cytocompatibility in vitro. Consequently, this kind of CPL/DS nanoplatform has great potential to serve as a safe and high-efficient bactericidal agent for endowing biomedical devices with bactericidal property.
卷号:10
期号:1
是否译文:否