论文成果
Domain-limited growth strategy to construct Fe3C@C@CNTs heterogeneous interfaces for multi-functional high-performance lithium-ion storage and microwave absorption
- 发布时间:2024-01-19
- 点击次数:
- 关键字:OXIDE-ASSISTED SYNTHESIS; CARBON NANOFIBERS; ANODE MATERIALS; FE; NANOPARTICLES; LIGHTWEIGHT; BATTERIES; NANOCOMPOSITES; NANOSHEETS; NANOTUBES
- 摘要:Rational designed cost-effective material is significant in the field of electric energy storage and microwave absorber. In this work, carbon coated Fe3C nanoparticles (NPs) encapsulated carbon nanotubes (Fe3C@C@CNTs) is delicately constructed through in-situ chemical vapor deposition (CVD) strategy. As a promising anode material for lithium-ion batteries (LIBs), the Fe3C@C@CNTs nanocomposite facilitates electron transport with intensive interfacial interaction, making it an ideal prototype to thoroughly understand the mechanisms of interatomic charge transfer mechanism. As a result, this well-designed Fe3C@C@CNTs anode exhibits a high reversible capacity of 1027 mAh g-1 after 150 cycles at 0.1 A g-1 and excellent cycling stability with 71 % capacity retention at 519 mAh g-1 after 1000 cycles at 1.0 A g-1. Electrochemical kinetic results confirm that the pseudocapacitance contributions reach up to 90.1 % at 1.0 mV s-1, and the higher pseudocapacitance characteristic is ascribed to the multi-dimensional encapsulated by CNT layer and carbon layer. Meanwhile, depending on the peculiar cavity structure and heterogeneous interfaces effects constructed by multi-dimensional encapsulated structure, the minimum reflection loss (RLmin) of Fe3C@C@CNTs nanocomposite can reach up to -67.63 dB in effective absorption bandwidth (EAB) of 7.12 GHz with the optimal matching thickness of 2.28 mm, suggesting its extensive potential application as practical alternative absorber. This domain-limited growth strategy opens a new horizon to achieve multi-functional application and beyond for Fe-based nanomaterial.
- 卷号:967
- 期号:-
- 是否译文:否