李镇江

+

其他联系方式

  • 邮箱:

论文成果

当前位置: 中文主页 > 科学研究 > 论文成果

Superfast tellurizing synthesis of unconventional phase-controlled small Pd-Te nanoparticles

  • 发布时间:2023-10-19
  • 点击次数:

  • 关键字:OXYGEN REDUCTION; ETHYLENE-GLYCOL; OXIDATION; ELECTROOXIDATION; NANOCRYSTALS; ELECTROCATALYSTS; NANOSTRUCTURES; ETHANOL; NI; NANOWIRES
  • 摘要:Large-scale production of unconventional phase-controlled telluride catalysts in a simple and fast manner still poses a great challenge. Herein, we develop a superfast tellurizing synthesis method that can quickly prepare unconventional phase-controlled palladium telluride nanoparticles (Pd-Te NPs) on carbon nanotubes (CNTs) (i.e., PdTe/CNT, Pd20Te7/CNT) in 60 s. By merely tuning the mass of the tellurium precursors under the same conditions, fine (about 5.5 nm) and high-yield (about 90%) hexagonal structured PdTe/CNT and rhombohedral structured Pd20Te7/CNT can be precisely synthesized. The hexagonal structured PdTe/CNT exhibits excellent performance for glycerol oxidation reaction (GOR) and ethylene glycol oxidation reaction (EGOR). Specifically, the highest current density for GOR is 2.72 A mg(pd)(-1), which is 1.9-fold higher than that of rhombohedral structured Pd20Te7/CNT, and 2.8-fold higher than that of Pd/CNT. It also outperforms most catalysts reported in GOR. Meanwhile, the specific activity for EGOR is 3.65 A mg(pd)(-1), which is 2.1 and 3.9 times higher than those of rhombohedral structured Pd20Te7/CNT and Pd/CNT. We hope that this work can provide guidance for the preparation of crystalline phase-controlled telluride catalysts via new tellurization and inspire the application of crystalline phase-controlled materials.
  • 卷号:65
  • 期号:7
  • 是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn