刘勇   Associate professor

研究方向:功能纳米材料的设计合成及其在海水淡化、杀菌、能量储存方面的应用。承担项目:国家自然科学基金青年项目(24万) 山东省自然科学基金青年项目(15万) 青岛市原创探索项目(20万) 无锡新吴区“飞凤人才”(100万) 无锡“太湖人才”(100万)获奖情况:中国石油和化工科技进步三等奖论文情况:以第一作者或通讯作者发表高水平SCI论文30余篇,包括Adv. Funct. Mater.、ACS Nano...Detials

Bacterial cellulose: A versatile 3D nanostructure advancing electrode engineering for high-performance capacitive deionization

Release time:2025-07-14  Hits:

  • Key Words:CARBON NANOFIBER AEROGELS; DESALINATION; WATER; TECHNOLOGY; ENHANCE; FUTURE; ENERGY; MXENE; ANODE
  • Abstract:Capacitive deionization (CDI) is a promising technology for addressing global freshwater scarcity, and bacterial cellulose (BC), with its unique 3D nanostructure and sustainable nature, has emerged as an ideal material for CDI and faradic CDI (FDI) applications by enhancing desalination efficiency with minimal cost and manufacturing pollution. Despite these advantages, a comprehensive understanding of how BC's structural characteristics influence CDI and FDI performance is still lacking. This review, therefore, systematically evaluates recent advances in BC-derived materials for CDI, focusing on i) BC-derived carbon for electric double layer (EDL)-based CDI and FDI, ii) how its key properties (e.g., high conductivity, 3D networks, freestanding nature) address critical challenges (e.g., charge/mass transfer) of CDI/FDI, and iii) its potential to enable innovative cell designs like flow-through architectures. This review aims to provide fundamental principles and guidelines for optimizing BC-based CDI electrodes, paving the way for future innovations in BC-based CDI.
  • Volume:612
  • Issue:
  • Translation or Not:no