Release time:2023-10-19 Hits:
- Key Words:HYBRID CAPACITIVE DEIONIZATION; METAL-ORGANIC-FRAMEWORKS; BRACKISH-WATER; ENHANCED DESALINATION; CARBON NANOTUBES; SEAWATER DESALINATION; STORAGE ELECTRODE; PERFORMANCE; GRAPHENE; INTERCALATION
- Abstract:Capacitive deionization (CDI) is an energyefficient desalination technique. However, the maximum desalination capacity of conventional carbon-based CDI systems is approximately 20 mg g(-1), which is too low for practical applications. Therefore, the focus of research on CDI has shifted to the development of faradic electrochemical deionization systems using electrodes based on faradic materials which have a significantly higher ion-storage capacity than carbon-based electrodes. In addition to the common symmetrical CDI system, there has also been extensive research on innovative systems to maximize the performance of faradic electrode materials. Research has focused primarily on faradic reactions and faradic electrode materials. However, the correlation between faradic electrode materials and the various electrochemical deionization system architectures, i.e., hybrid capacitive deionization, rocking-chair capacitive deionization, and dual-ion intercalation electrochemical desalination, remains relatively unexplored. This has inhibited the design of specific faradic electrode materials based on the characteristics of individual faradic electrochemical desalination systems. In this review, we have characterized faradic electrode materials based on both their material category and the electrochemical desalination system in which they were utilized. We expect that the detailed analysis of the properties, advantages, and challenges of the individual systems will establish a fundamental correlation between CDI systems and electrode materials that will facilitate future developments in this field.
- Volume:15
- Issue:9
- Translation or Not:no