刘勇   Associate professor

研究方向:功能纳米材料的设计合成及其在海水淡化、杀菌、能量储存方面的应用。承担项目:国家自然科学基金青年项目(24万) 山东省自然科学基金青年项目(15万) 青岛市原创探索项目(20万) 无锡新吴区“飞凤人才”(100万) 无锡“太湖人才”(100万)获奖情况:中国石油和化工科技进步三等奖论文情况:以第一作者或通讯作者发表高水平SCI论文30余篇,包括Adv. Funct. Mater.、ACS Nano...Detials

Recent Advances in Faradic Electrochemical Deionization: System Architectures versus Electrode Materials

Release time:2023-10-19  Hits:

  • Key Words:HYBRID CAPACITIVE DEIONIZATION; METAL-ORGANIC-FRAMEWORKS; BRACKISH-WATER; ENHANCED DESALINATION; CARBON NANOTUBES; SEAWATER DESALINATION; STORAGE ELECTRODE; PERFORMANCE; GRAPHENE; INTERCALATION
  • Abstract:Capacitive deionization (CDI) is an energyefficient desalination technique. However, the maximum desalination capacity of conventional carbon-based CDI systems is approximately 20 mg g(-1), which is too low for practical applications. Therefore, the focus of research on CDI has shifted to the development of faradic electrochemical deionization systems using electrodes based on faradic materials which have a significantly higher ion-storage capacity than carbon-based electrodes. In addition to the common symmetrical CDI system, there has also been extensive research on innovative systems to maximize the performance of faradic electrode materials. Research has focused primarily on faradic reactions and faradic electrode materials. However, the correlation between faradic electrode materials and the various electrochemical deionization system architectures, i.e., hybrid capacitive deionization, rocking-chair capacitive deionization, and dual-ion intercalation electrochemical desalination, remains relatively unexplored. This has inhibited the design of specific faradic electrode materials based on the characteristics of individual faradic electrochemical desalination systems. In this review, we have characterized faradic electrode materials based on both their material category and the electrochemical desalination system in which they were utilized. We expect that the detailed analysis of the properties, advantages, and challenges of the individual systems will establish a fundamental correlation between CDI systems and electrode materials that will facilitate future developments in this field.
  • Volume:15
  • Issue:9
  • Translation or Not:no