青岛科技大学  English 
刘静
赞  

硕士生导师  

教师拼音名称:liujing

电子邮箱:

所在单位:新能源材料与器件教研室

学科:

材料学

手机版

访问量:

最后更新时间:..

Insight into different-microstructured ZnO/graphene-functionalized separators affecting the performance of lithium-sulfur batteries

关键字:

摘要:Improvements in cyclability and rate capability of lithium-sulfur batteries (LSBs) are imperative for their further practical applications. In this study, we integrated the excellent conductivity of graphene and chemical adsorption of ZnO to confine polysulfides by applying a film of ZnO/graphene on a membrane to functionalize separators. To determine the effect of microstructures of polar materials on the electrochemistry of a sulfur cathode in terms of dimensions and hollow structures, different ZnO structures were designed, which could guide the effective functionalization of separators. Systematic electrochemical testing results indicated that 1D ZnO nanotubes and 3D ZnO hollow octahedra were composed of smaller nanoparticles, which could provide sufficient active sites to adsorb polysulfides by chemisorption. The voids in channels and hollow structures could locally condense the polysulfides, thus promoting reaction kinetics. Besides, the 1D channels could orientationally accelerate the electron transport and shorten the ion transport distance to further improve reaction kinetics. These advantages were not shown by 0D ZnO nanoparticles. Hence, 1D ZnO/2D graphene (1D/2D)-functionalized membranes played the role of restricting the shuttle effect of polysulfides better than 3D ZnO/2D graphene (3D/2D) separators, and the 0D/2D separator exhibited the worst restriction over polysulfides. The cells with 1D/2D separators exhibited excellent cycling performance (927 mA h g(-1) at 1C after 200 cycles) and high rate capacity (754 mA h g(-1) at 6.0C).

卷号:7

期号:8

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn