教授
博士生导师
硕士生导师
教师拼音名称:linjianjian
电子邮箱:
入职时间:2018-09-11
所在单位:化学与分子工程学院
学历:博士研究生
办公地点:四方校区第一实验楼216
性别:女
联系方式:19862229511
学位:工学博士
职称:教授
毕业院校:澳大利亚伍伦贡大学
最后更新时间:..
关键字:WATER; ELECTRODE; PERFORMANCE; OXIDATION; SULFIDE; LAYER; ARRAY
摘要:The development of cost-effective transition metal catalysts for oxygen evolution reaction (OER) is critical for the production of hydrogen fuel from water splitting. Low-cost and efficient stainless steel-based catalysts are expected to replace the scarce platinum group metals for large-scale energy applications. Here in this work, we report the conversion of commonly available inexpensive and easily accessible 434-L stainless steel (SS) into highly active and stable electrodes by corrosion and sulfuration strategies. The NixFe1-xS layer as a pre-catalyst and S-doped NixFe oxyhydroxides in situ formed on the catalyst surface are the true active species for OER. The optimized 434-L stainless steel-based electrocatalyst exhibits a low overpotential of 298 mV at 10 mA cm(-2) in 1.0 M KOH with a small OER kinetics (the Tafel slope of 54.8 mV dec(-1)) and good stability. This work reveals the 434-L alloy stainless steel with Fe and Cr as the main elements can be used as qualified OER catalysts by surface modification, along with a new mentality to solve the energy and resource waste problems.
卷号:29
期号:44
是否译文:否