教授
博士生导师
硕士生导师
教师拼音名称:linjianjian
电子邮箱:
入职时间:2018-09-11
所在单位:化学与分子工程学院
学历:博士研究生
办公地点:四方校区第一实验楼216
性别:女
联系方式:19862229511
学位:工学博士
职称:教授
毕业院校:澳大利亚伍伦贡大学
最后更新时间:..
关键字:MOS2 MONOLAYERS; ENERGY-STORAGE; NANOSHEETS; ELECTRODES; SULFIDES; NANORODS; GROWTH; ARRAYS; CLOTH; ANODE
摘要:Currently, advanced technologies and promising market drive the fast growth of supercapacitors, which poses an urgent requirement for distinctive electrode materials with unique structures and excellent properties. In this work, MoS2 nanosheets are in situ grown onto hollow MnS microcubes, and a 3D hollow hierarchical bimetallic sulfide architecture is prepared with 2D nano-subunits (MnS@MoS2) for supercapacitors. It is novel to couple a covalent assembly strategy with hetero-phase regulation to fabricate MnS@MoS2 with controllable morphology. The characterization and experimental analyses demonstrate the synergy between Mn-S-Mo bonds, and this synthesized material exhibits adequate active sites, short ion diffusion path and improved conductivity. Optimized MnS@MoS2 delivers superior capacitance as an electrode material. Moreover, the assembled asymmetric supercapacitor device possesses an advanced energy density of 64.98 W h kg(-1) at 1600 W kg(-1) and superior cycling life. This report not only combines the advantages of multiple composites, but also proposes a novel idea for integrating bimetallic sulfides.
卷号:10
期号:17
是否译文:否